Developers’ Perspectives on Architecture Violations: A Survey

Ajay Bandi
School of Computer Science and Information Systems
Northwest Missouri State University
Maryville, MO, 64468, USA
ajay@nwmissouri.edu

Abstract

Architecture violations are indicators of code decay.
Software developers have to follow the original or
planned architecture. However, several systems often
require redesign or reengineering. This paper aims
to understand the knowledge of software developers
architecture violations and anti-design patterns. I
used an exploratory survey to collect responses from
30 professional software developers. Analysis of the
responses found 25% of respondents were not aware of
about architecture violations while 36% were aware of
them but were not sure of their significance. Based on
the responses, I also identified five categories of develop-
ers’ perspectives on architecture violations and design
anti-patterns: non-adherence to original architecture,
lack of software quality, poor design decisions, lack of
developer’s skills, and cost-benefit considerations.

keywords: architecture constraints, architecture vi-
olations, survey, reverse engineering, software evolution

1 Introduction

Properly implemented, code should follow specified
architectural constraints and conform to the concep-
tual architecture. However, architectural violations
are often due to new interactions between modules
that were originally unintended in the design [11, 15,
17, 18]. Such violations may be caused by adding
new functionality, by modifying existing functionality
to implement changing requirements, or by repairing
defects. When such changes are inconsistent with the
planned architecture and design principles, the system
becomes more complex, hard to maintain, and defect-
prone [6, 13, 20]. Often, redesign or reengineering of
the whole system is the only practical solution for this
problem [9]. Such gradual increase in software com-
plexity due to unintended interactions between hard-to-
maintain modules is called “architectural degeneration”
and “code decay” [3, 4, 6, 10]. Research shows that
violations of architecture and design rules cause code

978-1-943436-05-7 / copyright ISCA, SEDE 2016
September 26-28, 2016, Denver, Colorado, USA

to decay [6, 9, 11]. My research focuses on exploring
the developer’s awareness of architecture violations or
design anti-patterns.

The remainder of this paper is organized as follows.
Section 2 presents the background on architectural
violations. Section 3 details the methodology of my
survey. Section 4 presents the preliminary results and
analysis of my survey. Section 5 presents conclusions
and future work.

2 Background on Architecture
Violations

This section presents part of the related work section
from Bandi’s dissertation [2]. Software systems often
refer to an architectural model and are organized into
several subsystems and modules that follow some design
rules. These design rules constitute the constraints
on architectural styles and software design patterns.
Developers may violate these constraints from one
version to another. This is the starting point of
architecture degeneration that causes code decay and
makes maintenance difficult. Managing architectural
violations for each version during software development
and maintenance can prevent architectural degenera-
tion. Below are a couple of examples that show the
violations of design rules in architectural styles and
design patterns.

Figure 1 shows a simple Layered architecture and
modules within those layers. Following are some of the
constraints imposed on the layered architecture [5, 12].

e Layer dependencies are not transitive. If layer A
is allowed to use layer B, and layer B is allowed to
use layer C, it does not automatically follow that
layer A can access layer C.

e Each module within a layer is allowed to access
other modules within the layer.

e If one layer accesses another layer, all modules

[A1]I[_aj\??[m)
:

[B1]Iia;ezr?[m)
:

Layer C

[c1] c2][cs]

Figure 1: Violations in Layered architecture style

defined with public visibility in the accessed layer
are visible within the accessing layer.

A violation can occur when a developer attempts to
allow a module from Layer C to access data from Layer
A, which is not defined in our rules (marked with an
“X” in Figure 1). This small violation represents an
initial sign of architectural degeneration.

The Mediator design pattern is often used when
interactions among objects are unstructured, complex,
and their reuse is difficult [5, 8]. Figure 2 shows an
example of a Mediator pattern and potential violations
(marked as “X”). If tasked to implement new func-
tionality for aCheckbox, a developer might complete
the task using several interactions between the other
colleagues (e.g., alistBox, aButton, anEntryField),
but these interactions would violate the rules of the
Mediator design pattern. This implementation results
in tight coupling between colleagues and makes it more
difficult to understand the architecture of the system.
A correct implementation is marked with a dashed line
in Figure 2. All these constraints can be represented
using can-use/cannot-use phrases. My research’s main
goal is to understand the developer’s knowledge of these
violations.

3 Methodology

In order to investigate the developers’ awareness of
architectural violations and anti-patterns, I chose to use
the survey method [7, 14, 19]. T used exploratory studies
of code smells [20] as a model for my study. My study
focuses on two research questions (RQ):

e RQ1: Are software engineering practitioners famil-
iar with architecture/design violations?

I

aListBox N

> < I

aClient |« | aFontDialogDirector <«— | anEntryField

AN <

aButton \ ~+ | aCheckbox

|

Figure 2: Violations in Mediator design pattern

e RQ2: How aware are software engineering practi-
tioners of architecture/design violations?

I prepared survey questions consisting of background
information on the respondents, including predominant
role, expertise in programming languages, familiarity
with programming-languages paradigms, and software
development experience in the number of lines of
source code. A five-point Likert scale questions their
familiarity with architectural violations and design
anti-patterns; the sources from which developers learn
about these concepts; and how concerned they are
about the presence of architecture violations in their
software systems; and the specific design patterns
that developers focused on during the implementation,
detection, and refactoring of those patterns or architec-
ture constraints. The complete survey is not included
in this paper because of space limitations. The survey
was prepared using Survey Monkey and can be found
in the website [1]. The survey was forwarded to the
members of the Professional Advisory Team (PAT)
of the School of Computer Science and Information
Systems at Northwest Missouri State University. The
PAT members then forwarded the survey to their
software development teams. Upon completion of the
survey, I exported the data from Survey Monkey to be
used for my analysis.

4 Results and Analysis

This section presents the results and analysis of the data
I collected in the survey.

Table 1: Predominant role of the respondents

Category Number | Percentage
Developer 15 50%
Architect 11 36.67%
Tester 2 6.67%
Project Manager 1 3.33%
Self-employed 1 3.33%
Total 30 100%

Familiarity with type of Programming language
paradigm

o [EINAST 7
e SN 7 [

0% 50% 100%
Percentage of respondents
m Slightly familiar
Very familiar

Object Oriented I 8

Programming language paradigm

M Least familiar
m Moderately familiar
B Most familiar

Figure 3: Respondents familiarity with the type of
programming language paradigm

4.1 Background and skills of respon-
dents

Out of 45 respondents, 30 respondents fully completed
the survey, yielding a response rate of 67%. All the
respondents are software developers from the Mid-west
region of the United States. Table 1 shows a summary
of the different roles of respondents and their frequency.

Figure 3 presents the self-assessed proficiency of the
respondents with respect to the programming lan-
guage paradigm. The majority of the respondents 21
or 70% mentioned that they are most familiar with
Object-Oriented programming paradigm. Interestingly,
5 (16%) respondents mentioned that they are most
familiar with both Imperative and Functional language
paradigms. When compared to Imperative, a larger
group of respondents are confident with a Functional
programming paradigm (40% for moderately familiar,
23% for very familiar, and 16% for most familiar).

Figure 4 presents the self-assessed proficiency of the
respondents with respect to the programming lan-
guages. While analyzing the data, I found 16 (64%) re-
spondents are novices with respect to Python program-
ming language. Nine 9 (30%) respondents mentioned
that they are most familiar with Java programming

Proficiency in programming language

VISUAL BASIC

JAVASCRIPT

PYTHON

C#

Programming language paradigm

0% 20% 40% 60% 80% 100%
Percentage of respondents

m Novice m Beginner m Competent i Proficient M Expert

Figure 4: Respondents Proficiency in programming
languages

Experience with respect to programming language

Java T [
C I I

Ct I IET——
C+ THN
Python I
[
Visual Basic [V

Programming language

JavaScript [

0
>20 m15-20

10
Number of respondents
m10-15 5-10 m2-5 mo-2

Figure 5: Experience with respect to programming
language

language. A larger group of respondents are confident
in Java (40% competent, 23% proficient, and 17% ex-
perts) and JavaScript (20% competent, 37% proficient,
and 30% experts) programming languages.

Figure 5 presents the respondents’ number of years of
experience with respect to the programming language.
The majority of the respondents have experience in
JavaScript, Java, and C++ programming languages
varied from 2 to 20 years of experience. If a value was
not entered for the respective programming language,
the number of years of experience for that respondent
was valued at zero.

Figure 6 represents the work experience of respon-
dents with respect to the programming language in
terms of lines of source code (LOC). If a value was not
entered for the respective programming language, the

30

Lines of code with respect to programming language

Java [I
© cm I—
oo
3]
> —
g G+ I —
2 ct | —
£
© Python
oo
o
a

Visual Basic

Java Script
Number of respondents
0 5 10 15 20
m 100k Loc - 1m Loc m 50k Loc - 100k Loc
m 5k Loc - 10k Loc m 0 Loc - 5k Loc

m >1million Loc
10k Loc - 50k Loc

Figure 6: Lines of code with respect to the
programming language

Level of insight in software architecture violations

B - -

0% 20%

40% 60%
Percentage of respondents
H Never heard of them.

H Heard about them, but | am not sure what they are.

1 General understanding, but did not use these concepts.
Good understanding, and use these concepts sometimes.

M Strong understanding, and use these concepts frequently.

80% 100%

Figure 7: Level of insight of architectural violations

years of work experience for the respondent was valued
at zero. Two respondents answered “Other” category of
programming language, one respondent with four years’
experience working with 8kLOC in PeopleSoft, and
another respondent with one year’s experience working
with 500kLOC in Objective-C programming language.

4.2 Level of insight in software architec-
ture violations

This section addresses our first research question. RQ1:
Are software engineering practitioners familiar with
architecture/design violations?

From the total set of respondents, 7 (25%) answered
that they have never heard about the architecture
violations or design anti-patterns. In the remaining
answers, 10 (36%) responded that they had heard about
architecture violations or design anti-patterns, but the

25

respondents were not sure what these terms mean. A
total of 4 (16%) respondents replied that they have a
general understanding but did not use these concepts.
A total of 6 (21%) respondents answered that they have
a good understanding of these concepts and use them
sometimes. Only one respondent (4%) answered that
they have a strong understanding of these concepts and
use them frequently in writing software. These findings
suggest that there is a need for research in the software
industry about architectural violations and design anti-
patterns.

4.3 Awareness of software architecture
violations

This section addresses our second research question.
RQ2: How aware are software engineering practitioners
of architecture/design violations?

We used coding techniques in ground theory [16] to
synthesize the survey responses. Table 2 shows a few
examples of what the respondents mean by architecture
or design violations with codes. The technical report
has the complete list of statements along with the codes.
In total, we have the following five categories with
respective codes.

(1) Non-adherence to original or planned architecture:
This category relates to the comparison of the
designed or conceptual architecture and the imple-
mented architecture of the system. Codes belong-
ing to this category are ‘conflict,” ‘contradict,” and
‘not follow’ the architecture rules.

Lack of software quality: This category covers
the rationale in connection to adding functional-
ity, repairing defects, and modifying the existing
software. Codes fitting this category are ‘ease of
maintenance,” ‘flexibility,” ‘durability,” and ‘secu-
rity” of the later software versions.

Poor design decisions: This category relates to the
architect or project manager’s decisions during the
architecture and design stages. Codes related to
this category are ‘decision’ and ‘choice.’

Lack of developers’ skills: This category relates
to the respondent’s knowledge of the design prin-
ciples. Codes belonging to this category are
‘lack of knowledge,” ‘poor abstraction,” and ‘poor
documentation.’

Cost-benefit considerations: This category consists
of statements relating to deadlines, costs, and
release dates. Codes fitting this category are ‘time
pressure,” ‘deadlines,” and ‘no/less budget.’

Table 2: Predominant role of the respondents

ID

Statement

Code

Software implementations that contradict architecture
principles or good design principles.

Contradict

Architecture/Design violations are code, algorithms, or
whole applications that are not designed according to
established patterns and design principles that enable
efficient operation or ease of maintenance for the
application.

Ease of maintenance

12

Decisions which negatively impact non-functionals or
contradict the prescribed architecture or design

Decisions

16

One of a couple things. First, code that is structured
poorly or doesn’t use good abstraction. Second, the
application of software patterns in situations where
they are not warranted.

Poor abstraction

25

Spaghetti code due to time pressure on a project with
no budget to refactor. Asp classic templates and SQL
server dts package templates still being reused because

Time pressure, no budget

no budget to modernize them.

5 Conclusion and Future Work

In this paper, I reported the preliminary results of
my survey on the perspective of software developers
on architecture or design violations. I analyzed the
data from 30 respondents (software developers) on their
background and their level of insight about software
architectural violations. The data showed that 25%
of the respondents had no awareness of architecture or
design violations, and 36% of the respondents had heard
about them but were not sure what the terms mean.
These findings suggest that there is need to increase
awareness of architectural violations and design anti-
patterns in the software industry.

I also analyzed data on how the software develop-
ers understand the concepts of architecture or design
violations. Based on the statements provided by
the respondents, I identified five categories of per-
ceived violations, including non-adherence to original
or planned architecture, lack of software quality, poor
design decisions, lack of developers’ skills, and cost-
benefit considerations.

In the future, I will analyze and present the results of
the data about the level of concern of the architecture
violations in the source code; the sources from which
the developers learn about the concepts, detection, and
refactoring of architecture violations; and the imme-
diate need for developers to take courses in software
architecture violations and design anti-patterns.

Acknowledgments

I thank all the respondents of this survey. I also thank
Dr. Edward B. Allen and Dr. Tanmay Bhowmik for

their valuable suggestions to this survey. My sincere
thanks to Ms. Giuli Coniglio for proofreading and
editing this paper.

References
[1] Ajay Bandi. Architecture/design violations
survey. https://www.surveymonkey.com/r/

ArchitectureViolationsSurvey.

[2] Ajay Bandi. Assessing code decay by detecting
architectural violations. PhD thesis, Mississippi
State University, December 2014.

[3] Ajay Bandi, Edward B. Allen, and Byron J.
Williams. Assessing code decay: A data-
driven approach. In Proceedings of ISCA 24th
International Conference on Software Engineering
and Data Engineering., 2015.

[4] Ajay Bandi, Byron J. Williams, and Edward B.
Allen. Empirical evidence of code decay: A
systematic mapping study. In Proceedings:
20th Working Conference on Reverse Engineering,
pages 341-350.

[5] Paul Clements, Felix Bachmann, Len Bass, David
Garlan, James Ivers, Reed Little, Robert Nord,
and Judith Stafford. Documenting Software
Architecture: Views and Beyond. Addison-Wesley,
Boston, MA, 2003.

[6] Stephen G. Eick, Todd L. Graves, Alan F. Karr,
J. S. Marron, and Audris Mockus. Does code
decay? Assessing the evidence from change

management data. IEEFE Transactions on Software
Engineering, 27(1):1-12, 2001.

[7]

8]

[10]

[12]

Arlene Fink.
Calfornia, 2003.

The Survey Handbook. SAGE,

Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-
Wesley, Boston, MA, 1994.

Michael W. Godfrey and Eric H. S. Lee. Secrets
from the monster: Extracting Mozilla’s software
architecture. In Proceedings: 2nd International

Symposium on Constructing Software Engineering
Tools, 2000.

L. Hochstein and M. Lindvall. Diagnosing
architectural degeneration. In Proceedings: 28th
Annual NASA Goddard Software Engineering
Workshop, pages 137-142, 2003.

M. Lindvall, R. Tesoriero, and P. Costa. Avoiding
architectural degeneration: An evaluation process
for software architecture. In Fighth IEEE
Symposium on Software Metrics, pages T7-86,
2002.

Gail C. Murphy, David Notkin, and Kevin J.
Sullivan. Software reflexion models: Bridging the
gap between design and implementation. [EEE
Transactions on Software Engineering, 27(4):364—
380, 2001.

Steffen M. Olbrich, Daniela S. Cruzes, Victor
Basili, and Nico Zazworka. The evolution and
impact of code smells: A case study of two open
source systems. In Proceedings: 3rd International
Symposium on Empirical Software Engineering
Measurement, 2009.

P. Runeson and M. Host. Guidelines for conducting
and reporting case study research in software
engineering. Empirical Software Engineering,
14:131-164, 20009.

Santonu Sarkar, Girish Maskeri, and Shubha
Ramachandran. Discovery of architectural layers
and measurement of layering. The Journal of
Systems and Software, 82(11), 2009.

A. Strauss and J. Corbin. Basics of Qualitative Re-
search: Techniques and Procedures for Developing
Grounded Theory. SAGE, 1988.

Adrian Trifu and Radu Marinescu. Diagnosing
design problems in object oriented systems. In
Proceedings: 12th Working Conference on Reverse
Engineering, 2005.

[18]

[19]

[20]

Roseanne Tesoriero Tvedt, Patricia Costa, and
Mikael Lindvall. Does the code match the
design? A process for architecture evaluation. In
Proceedings: International Conference on Software
Maintenance, pages 393-401, 2002.

Claes Wohlin, Per Runeson, Martin Host, Mag-
nus C. Ohlsson, Bjorn Regnell, and Anders
Wesslen. FExperimentation in Software Engineer-
ing. Springer, Berlin, 2012.

Aiko Yamashita and Leon Moonen. Do code smells
reflect important maintainability aspects? In
Proceedings: IEEE International Conference on
Software Maintenance, pages 306-315, 2012.

